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SOME ASY4PTOTIC PROPERVES OF FUZZY SET SYSTEMS

I.R. Goodman

Naval Ocean Systems Center
Surveillance Systems Department
Systems Research Branch, Code 7223

Sap Diego, California 92152

ABSTRACT finite sample size cases for various fuzzy set systems.
Although some fuzzy set systems are shown not to admit

For any choice of t-norm for conjunction, t-coaorm nontrivial (i.e., either non-zeroor zero in the limit-
for disjunction and some complement operator, a fuzzy Ing case bu y i t niqueon- ially zero forms
set system may be determined. All properties and defin- for the posterior possibility functions7 asymptotic
itions may be obtained through- the use or multivalued forms , others indeed admit well-defined computable
logic theory. Previous investigations by the author for results that also differ significantly from the finite
such systems has led to rather general characterizations sampling size case. n example of the former is the
for those fuzzy set s stems which admit weak homomor- well known system -(-.),min,max) ; an example of the
phic randon set representations. (By "weak", it is latter is any syste -based on Frank's family (& . In
meant that identification between fuzzy and random sets fact, a quite gener I. class of fuzzy set systems , in-
is through the one-point coverage functions of the cluding those based- an Frank's family as a special case,
random sets and the membership functions of the fuzzy is shown to admit co putable finite and large sample
sets.) Frank's family of t-norms and t-conorms plays a size forms for the posterior possibility functions and
key role in these characterizations. It is shown that related functions -(Theorem 9).
by developing conditional fuzzy sets.and Bayes'theorem
in this general context, a meaningful type of fuzzy 2. CONDITIOrAL FUZZY SETS AND BAYES' THEOREM
Central Limit Theory may be obtained for not only
Frank's family, but for other families of t-norms and Before proceeding to the analysis , some brief
t-conorms. remarks concerning notation -r in order.

OA: X-4 (0,11 is that mapping indicating the
1. INTRODUCTION fuzzy set- membership, or equivalently, possibility

function for fuzzy set A. We write A C F(X) to indicate
In previous work, a number of close connections was that A is -a fuzzy subset of X, and if A is an ordinary

established between fuzzy set theory and-probability set , ACP(X) indicates that A is an ordinary subset
theory. This basically involved the (many-to-one) cor- of X. Here, base space X is an ordinary set.
respondences of random sets to fuzzy sets--through the
-0 .ee ont coverage functioo .. (See Ell - [41.) Six important t-norm and- t-conorm operators have

Other parallls between t e wo disciplines were estab- been specially labeled:
/ lished in E43' where multivalued logic-theory was used ) min for minim m

as a basis ir enerating entire classes of fuzzy set (2)-max. for maximm ,
systems. Each such system was determined by a triple F (3) prod for product, i.e., as in a.b.c ,
= ( 'not, & , Vlor) of operators, where Onot is some- (M)probsum for probabilistic sum, ie., as in
unary invdlution or negation, J is a t-norm-and 'or is
a t-conor4 (the latter two are here always assumed to (5) minbndsum for sum-subtracting one less than
be contin ous, associative, and symmetric).(See (4i or argument number and bounded below by 0, i.e.,as
1 5] for/general background on t-norms and t-conorms.) max(a+b+c-2,O)
Up to s6 cification of any particular F, all definitions () Qacbndsum for sum bounded maximally by 1, i.e, as
were a plicable to any fuzzy set system. One such def- min(1, a+b+c)
.niti n was that of conditional fuzzy sets, similar in where a,bc f[O,l are arbitrary; the definitions
form to that for random variables. Another related con- extendable to 1,2, amd h or more arguments
cep discussed in hivas a fuzzy set version of Bayes' (See (41 and (5] for various properties of these specialthoem. (See (i, eqs.(3.ll) and (31))t-norm and t-oo .

'I One of the criticisms in- the past that has been- Also, note the use of the symbol C0,11 to mean the
eveled at fuzzy set theory users is the apparant lack closed unit interval. Similar definitions hold for

of both a finite and asymptotic sampling theory anala- (a,b) , the left open at a, right closed at b interval,
gous to the well established counterparts in probability etc. As usual, 6 indicates ordinary element membership;
theory (6] However. Dishkant (7J[has presented a begin- but if a subscript is usedmas in C1 , e.g., this is a
'ning f-a-ifTzzy set version oC,.tral Limit Theory., positive constant. The small bLack square 0 indicates
Earlier, this author also presented some rcsults in this the end of a theorem, lemma, or remarK. Other notation
irection. (See 8 eorem 2.2.) will be explained as introduced.

In this pape-r, the genesis of a fuzzy set sampling
technique is presented, pwralleling to a certain -extent Definitions
the ordinary Bayesian approach to random sampling and Let XI and X2 be two given base spaces and '& any
parameter estimation. As a consequence, an analysis i- t,-norm. For any A e F (X1  x) , define a projection
carried out coicerning the structure of posterior possi- pl(A)CP(.X) by OPl(A)(Xl)j '- or (A(;TXX2)) .XlCX
bilities and related functions for both finite and in- X
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and similarly define p (A) F(). Then it follows 'PBn.)
from basic properties ' of t-norms that aU xj C Xj, J. n
1,2, there are (pl(A) I x2 )-C F(X 1 )- aid (p2 (A )-I xl) F The next theorems con.ern the asympto'c behavior
F (X2), called conditional fuzzy sets , ouch that for of and hence of (B )(Yj) as n -* First
all Xl' '. 

o An  
an ).

define
,(xl,-2) (P l(A) l  ) (() 1n,j() - . yj)()'n,j 6

= V/( 4 (p 2(A) I xl])(x2),)p(Al(xl))

which are uniquely determined over supp( ) a(x 2 ) j)(X)
( xA( x2)> 01 , provided P isA etrictly p. n

nreas inea argument. Note that if AcP(X1 X X2) (b- (xP,) ..
then pj(A) is the ordinary projection. of A into X n A - 2 (8)
and (p,(A) I X1), say, is the section "of A in X2, given
x1 . (See, e . ., [91 for background.)

It then follows lmmediate ty that a fuzzy set form 3. ASWTOTIC BEHAVIOR OF AVERAGED UZY DATA AND
of Bayes' theorem is obtainable. TOSTEIOR FUMY FR SETS

Theorem 1. Fuzzy -Bayes' Theorem. Theorem 2.
Le A t F (XX X2) with q, a strictly increasing Suppose the conditions for Theoremihold with modi-t-norm. Then ovea supp(A), (pI(,) I x2) is a function of fications (a),(b),(c), for each n_ l-, and suppose the

(u,(A) I - ) and pl(A), determined implicitly from the constant sample means cnverge:
following equations lir cP (X2 ) a-¢ce(x2 ) exists;x2 X2 - (9)

&('P(Pl(A)I i x)(x!), F(A)(X)) (2) 'Suppose also for all nl,
a.n-1 6 w' 4 bnC2 (10)

(p(A)-l x 1 )(2J Pp1 . (X) ' where O<a _b and E.40 -are all constants, with
where Ci + C2 < 1 .

where,. ~Thus,
-Pp 2 (A)(x2)-' V or (P&(V(p2(A) 1 x(x2),'p(A)(Xl. O<CnVn,j _ D ; J=i,..,n , (11)

(3)oca O (a/b).n-(l+£,+EC <l , (12)

Remark 1. O<D (b/a)'n'(l- l-f,,<(13)
Kn obvious analogy holds here with respect to where J.i that n > a13) (b/a)l/(l:--

standard-Bayesian modeling. We can interpret (p2 (A) I w) it that for > - 1 ( an- -/n satisfies (11).
to be the condivicnal fuzzy data set, p1 (A) to be he-
prior fuzzy parameter set (p-A) I x ) to be the Then r th& fuzzy set system determined by

pooterior fuzzy paramet-r set, andA p2 (A)2 to be the (1-
ava- ged fuzzy data Eet where x2 may be considered (o (-),prod,probsum), for all n
a fuzzy outc--- .7n the Bayesian formulation, ad
prod and 41, is replaced by an integral or sum which is and all a e ' ,
possibly --weighted.) n -fl(1-a ) (14)

In conjunction with the above remarks, we will O (X2 ) = 1

assume that the following general fuzzy sampling exper- J-L

iment holds: (1'-(x) -lo(l- (A (x))_l (X ).(l+Jn) (15)
%ay pl(A) is known, but A itself is not known before- An An n

hand.
(b) (p(A) J is obtained empirically, scmetimes equivalen)ly.

through human sources, via a panel of "experts" -h An1cx2 ) -
(rather than from the unknown A via -Bayes' theorem). where, d A x2 )

-Jn 
=  (log('-Dn) + Dn)/Dn (16)

Theorem 1 can then be applied, with the above in-
terpretations, to obtain the desired posterior fuzzy- lim J =lm (Dn/(l-Dn) ) - 0 (17)
parameter set. The key computation lies in the evalua- bus, l-dCO n fl- co
tion of Pp A) in equation (3) . In -ddition to (a) nl l-% PA n(X2) %)A (X2) = l-e_ o (x, , (18)
and (b), assume that the following modification holds: .unif--rmly in xC Ywt ovrec aedtrieFirst define the weighted averags wit covrec raedeemie

by eqs.(15'), (16). Thus, for large n, all yE C,
, and all x,(yJ> an,j

5ths~' j - ~ n,,T ; J= l, ..,n (4 ) an a l( 1')

where - , > 0 are constants, and the normalized (Proof: Usirg
n uzzy prior set w is given by 0ian, J(x) ! D n 4 ; n>n o  (20)

(5)X2 (x o20
o,, , i)) = Ee Fo (an, j is a uniformly - in

otheris , iszex 2 6 X-and absolutely convergent double series. Factor

If a panel of experts is used, each yj represents oAt the term 0Xnix2) , Yielding
expert J .y i eX , , J-- ,2,.. q n( X2)- -1 0( 1 ' PA ('2)) - X 2 -) (1+

(c) Formally replac for n1 Iin eqs.(!),(2), N:-(, A n
pl(A) everywhere by w and denote the subsequent (/ an, k %,J))
value of ( by n 'PA and (p,(A ) I- byk

P2 A) by n Then consider the following lezz.a:
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Lemla . w3-c
i'l < 2 " j_(1+Eo), (36)

If 0 iu v; J'l,..,n , then for k=l,2,.. for constants cl ',c2', Eo >O,, and replace (4) by

f k vk-i (22) Wn,J = k lk ;J=l,..,n (37)ku / u j <_ ._-

using Ir=a I and eq.(20) in (21) yields a series Suppose also for all x2 C 2
on the right hand side of the inequality equivalent to
(15).) , li (l/n) F aj(_.) A ao(x 2 ) exists.(38)

n --j.o J=l
en for all xa  -X2

Next, consider the asymptotic behavior of 4An(x2 )
for three other fuzzy set systems. n=(x,) a0(x2 ) ,(39)

Theorem 3. with convergence rate given-by, for n > l (lo)Icl

Suppose the same conditions hold as in Theorem 2. n

Then I 'P.An (x2)-(l1n) . ~a _(x,) I(4'o)
(i) For the non-De Morgan fuzzy set system given by n1Pn~t-P&, Pox. prod maxbdsu- (1ln)-c2' (1+(l/n),P(l+ 6,))l(%'l-(c2'In) P(l+ 60)),

'not' &' (xor)=(l (" =in(l, 4p X(x2)) (23) where d

adim OA n(X2) = (2) =p(l+ e ) . ()

nc n -0 Equation(!O) remains valid and thus all conditions

uniformly in x e X2 . In turn, this implies for large n for Theorems 2 and 3 hold.
2  (ii) Equation (38) ho] -ff there exists real bl(x2) ,

(yJ that j(x) -converges and for all J

(ii) For the fuzzy set system (l-(),min ax) a 3 (x 2 )-a .l(xn) = J(b:(x2)-bjix.2 )), (42)

q)An(x") flax (min(a , ,n i ))_
n ~ J=l,..,nI 'n in which case for all x2e ,

_ n  , (26) a(

and ao(x:2) = F b (X2.)(1)
lim n1 A (x2) -0. Yet, and j =l

(y min( ajC(X),wn,) (27) bn(xa) = , ( ( a(x) - a. ',))/(J+l) , (44

(iii) For thi system (1-"), minbndsum,maxbndsum), for all n--1,27..

An(x2 ) = min(l, Fn aaj(x;)+vn,j-4,O) (28) (proofs: Eq.(14o)':mplies (i). For (ii), use the results
n= - on Cesaro convergence of order one, modified by all

(I) If for all n)n,, _ series as given replaced by telescopic ones , a found

Tl 9 card I J l j n, 1 ! a(x ). 1-Dn I-Sc.#- (,-r9) in Hardy (103 , Theorems 43,66, ani 77.)

or if 4
3  . /n and 1. ASYMPTOTIC BEHAVIOR OF FRANK'S FAMILY, YAGER'S

n card{ j II jl - n , 1Z a(y.)-21-1/a c 1-. 'n (3O) FAMMY ANZDAGEHERALDATION

for some constants 12 Y> Ei + 2 -Y2 >O ;cl>0, Consider nov Prank's-De Morgan family of t-norms

then uniformly in x2 , 2and z-conorms (43.
p&,,s(=x,y) lg(l+CsX-l)(sY-l)/(s-l)) (45)

n A (x?) to n (3)(x,y) 
=  -. &(l-x,l-y) (46)

(-I) If W Ln and for all x,y C E0,I3, and extendable in the obvious

d n,3 way to arbitrary arguments for all s, 0 4 s e+o . The

w' = card J] 1 i j - n, a (x,) =11 c2n , k32) cases s=0,1,+oo are all limiting special cases with

for con stao t c2, l c 2  > O th e n J _ ( * & ,O 1 or ,O ) =  ( in , a x ) , (

nMi A (x) c e2  -(33) ( y'&,_ = (prod,probsuw) , (4?)

(Proof: Use the relations, fizxt for w j general ( V&r+i'-or,o )  (minbdsmImxbdss))"

and 0 CPAn(x) min(l,Dn' (, It can be shown that t:.is faily of operatcs., and

min(l,(n)i (x.) ' mi~,ln n) I wi~ mre ganerally, all ordinal sums (4) of this fml

for w n n characterize the(asoiciativc) t-norm solu.ions of thE

for N functional equation , true for all x,yc(O,l]
Remark 2. &or(x(y) -'-,&(I-x'I-Y) = -Y4'&(x6) (1i8)

Evaluation of 1) B )(y,) in (iii) poses certain (Again, see[(1 for a number of properties of this famlIX,

complications and wiLan I Y)be omitted here.

Analagous to the computations uf averaged random 
The next theorem obtaias asymptotic properties forave (P (indicating the presence of para=ee ) hr

and posterior probability functions I nontrivial av= idctn hepeec fprmter s), where

aged fuzzy data and posterior possibility functions may n - -,)(,a(x 2)_)( )

be obtained, even when OA .x2) approaches 0, due t, (PA (x2 )l-c l+(s) -

the normalization form in n eq.(2). n(s9f (-l)(s-+(siJ -l)(s

It is of some interest to determine if relatively ( 9

simp le sufficient conditions exist for wn, and n j(x ) Define for 0 < s '.,o arbitrary fixed, sl,x2C ,

which insure eq.(9) holds. This is next -shown.nl,2,...

Theor-em 4. Cnjs(X) 
- (sJ(-)' 1 )(s'njl)s/

(i L wj3>o be such that for al J=1,2,.. ((s_)( _l+(.aj(x 2)-l)(swn.)_l))) (50)
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n and if u,(x2 ) also exists, then so -does7

r (/sl)isn d (52) and 9~,,5,(x2) =us(X?) .(l/(s-1))log s (68)
npA f -(/ 5 5 (og1r 5 )r 5 )f (x?) = h()(ss-)lgs , (69)

flJs 4-Ir~)lgIr~)r~)-(3 implying the exdstamze of

Theorem 5. Central Limit Type Theorem for Frank's "m 4' A (X2) -= o U(2)

Suppose that assumptions (a),(b),(c) hold and that
eq.(lO) holds. Then (Proof for Theorem 5 : c1,j,,(x2 ) can be written

(±) ~ i 0 c x? ensx)rn~ (54s) as b1 ft ,ftt/b+t) , b d /(s-),b 2 4 s-lt

1f5, 5(sx2)_)/(-l) (saj(x2)l).(--owDj-) 0. It ficl~wa ( for both O<s< I
(55) and 14,s ) that 0<-b f(t)1 Elwith b lf(t) increasing in

and equivalently, t, with maximal posslble value at t=(s-lXsDn-1). This
yields eq.(54s*, and in turn,

1-los('(s-(P~s (2) log6sl_&Ans(X2)_)/(s4l)) = - lg(l-cnjs(X2 ))

Ez ( anjs(x2) Jk/k , (71)
him r. = .0 , =1.

n-0 ~ by a rearrangement of the uniformly absolutely conver-
= li,5 =n (r /(l-rn~) 0 (56) gent double series. Nfow

'PAfn 5 (x2): E cj(2)-k4fn,( 2 )(l+Bn,(x 2 ))(i) ILM (-log(s1 I -inr(x)/(si) ~n( k=L j ~ 5 3 (t)/ (72)
n-O n wvhered+0

I li ( log(l-czn,J,s(x2 ))) Bns(x2 ) - E(/k) C.Jak(X:2) , (73)

= i fn,5 (xz) - f 0 ,( 2  (57) Cns() , (74)n o 0's(2) n~k~x) cc-J,( )/fs~x1 r.
(iii) Thus fcorx2) exists iff by using eq.(5 4 ) and J---in 1. Using (73) and (74) in

(72) yields an upper bound on the right hand side in a
n (:PAn (X2 ) = 1log(ls-)ef-,(XP2)) (58) series form leading to eq.(55).
-O n~ Proof for Theorem 6: For (ii) use

exists , uniforml=y in XC)2 with convergence --ate
given by eqs.(55) and (,6). in turn, for afll large n, Iga(x 2 )-M5 ~~.~ U13l a I~ 1 n-)/sl~ 5J -J n

(l+(Jo s .a(x2 )/(al)(l-e~~,s~2))) (59)n) n U(1(21)(5

6. Theorem 7 presents the limiting form-s for Theorem

The next result presents simpler convergence con-
ditions, equivalent to, or sufficient for, f,, to Theorem 7.
exist, which yields eq.(5 8 ). FF 'i)s1 . AUI limiting results as G approaches 1, are

- compatible with Theorem 2
Theorem 6. =i <j

Make the same assumptions as in Theorem 5. Then i') ajx 2
(r/max(sDnl))g n,,(x2) S fnE (Ya (/min(sDn'l))gn,,(x2) s_+~1 fns(X2 ) = 6!- ng,(x 2 ) = 4%n(x2)

where n 0-7I1 *n - An

lirn ran. = D
iff,,s(X 2 )= s.-B,,,(x 2 ) exists (62) S +tn

iii) if r,(x2))42 g,,,(r 2 ) exists . (63) nsn~)(~)

1is~~~~~~ ns".)(-)d tlim (n_)/~ (Xi)

uniformly in J, J=l, .,n, and if and eqc.(55 _),,,., and1(59) Y=,-rzctv1'm
d (15",,(15), and (19).

l((/)L(,aJ(~)l/l)=:(x 2 ) exss (i =O . Except for(x5) exssi x2
then 6.,(x2) and hence f,. *(x 2 ) exint with 5-t 20 n

all of the remaining important forms as Mected in (i)
g",(;)= IIs(X?) us . (66) be= 0.

(III) If wn' 31 and hence wnj M 1/n , J=1,..,n, then lim, C(sj,(72 ) = 0, -if aj(x2)+ilnj <1 , or- if
us=(LI/ss1.))log s exists, (67) 500 j(X 2  =0 o.-If wnj= (76)
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!imc42 3 5 (xi) = , i 0 <,aj( ,iwnj and Finally, in.Theorem 9 a general class of operators
s aJSz]+vj 1 , I (11) is-considered for asymptotic behavior.
lim as(x 2 ) = 1 , if O<aj(x2 ),wlj and Theorem 9. Central Limit Type Theorem for a Class of

s- njs aI(.42 )4-. > 1 (78) Analytic Operator Pairs.
Again, cake the same general assu=ptions as in

These relations can be used to compute li f and Theorem 5. Suppose also that is a
1 n(M s De Morgan system whereY/& has a genrator h: [l-0K),i.

which is strictly decreasing with h(O)=+O ,h(l)=O.

liz Ans(x2) = 0 , If aj(x 2 ).nj'.i (See 14) or 153 for further deta~is-oa generators.)
) A0 , if aJX)+WnJ <1) ,(i) .n((x2) - 1-h-( nh('- VI(-- JaJ(x 2 ))))An2( 2t

slim (log(sl-(PAns ) -)/(s-l)) = +, (80) " l-h-l( h(l-Vnj))

lim s =r 1 (B) - l-h-l(n-b(l-Dn)). (95)s- +40ns Thus, 'if

lI=P4 'is o (82) i nhI (6
S'- ~~ ~ ~ ~ n" - ,Slia(hl-n)) = 0 ,(6

lz liz () (x2 ) = liz ( ((x,)flog s) . (63) then n0nl'= 0- (X2) - o . (97)

The next result is connected with Yager's family (ii) Suppose also that for any fixed c e [0,1.,
of t-norms and t-conorms. In review, Yager r(1] has 'P(z,c) is analytic in z about soe neighborhood of 0
proposed the Minkoski-like forms .An that h is analytic within sor- fixed -neighborhood
Ip&,(X,y)d Max(1-((l-x)P+(l-y)p)1/P,O) (84) of - and below- 1. Suppose, further, that in eq.(10) ,

S (+2< and that% YA -1_ ',,(l-x,l_,):=in((xP+yp)l/ ,-l) (5'Por ~xY): - , (85) fl

Yor~p'x"liz ( E fij(x2) -- nj) a 19(x 2 ) exists, (98)
for all x,yE 10,11;l <5 p .c- . In addition, n ij

at p-=l, ( W-ip)=(minbndsum--,axbnds u) , where for J=1,2,...,

ct P:, ( ' ,V,,or,p)= (min,=x) ; (86) _(x ) =( 8a &(z,aj(X2))/& )zo (99)

- (prod,probsum) is not in the family. (See 143, Remark Finally, define d
6.2 for other properties.) K.-(d(z)/d) 7 1  _ 0 (100)

Theorem 8. Then, unLif6r-iIy in all x2 CE_ 2
the se- general assumptions as in Theorem 5.Then (A ( n-I- PAn(x2) h-(o (-) (o_

(i) For the (De Morgan) system (i-( ), F&,p,'Por,p) , n-h-)

( n( exists, ad for large m
OA (X2)=rn(lL a ')lJ(O-(2)P+ ltweJ)A OVp 1  (h(inj)+h(aj(x2)-h((tP ( 2))).

Anp(yx ) O  
(Proof: (i) follows from the monotone property of h.

(ri) For i): Expand out in a power series the functio
'A p(x2) _hpl/P.D. _l/P Dn. , (88) h(l- Y&(z,c))in z, yielding for all sufficiently s=mll

where for c-aj(x2) at Z=wnj
h e card 3 1.j n & j(x)>1(pDm-l/pI. (8)) h(l- V'(z,c)) o ;k* 8j(x2 ).z + 0(-2) , (103)

Thus, if either p> le-) or fp%(l-o 0(z 2 ) Indicating the remaining series has powers of
where IIdo> El+ E 2 , then z to at least 2 . Substitute (i03) into the first part

of -q.(95) , noting that
nliz ct (X2) -0. (90) n n2) D"a 2) t~2 C-2) E Jo4€ 'np o . _( j n-aD -= (n4-2

(il) For the non-De Morgan system (l-( I , ( or p) izi u

(P.;(x) = in( 1,( 7(anj(x,!))P)1Ip) ,I9) Remark 3.
np For Frank's family, the monotone generator h is

an easier for= to work with than in eq.(87). for all x C E0•,1 , 0 < s< +f fixed ,
Suppose now U 5l andn0 for s -, h (x) --o6((s'-l)/(-1))

liz (1/n) (, O 0(Xe) (9) (105)
2 -0.-I J=l PO- -O for s = I , hl(x } - -1o6 x

existS. Then for large n ,
and h5 is analytic about I. and P~.(t,c) i-. analytic

(nn (x2)-n(l/P)Op(x ) (93) aOsOt0. Also,

B,~jX2 J; c-hs('aj(x2)) . 3 x) ~ (106)
(Proa : Use the inequality 8L(X) = P 2 ) ; 5-1 .

.(p a )I/p l-(l-(l- 6 )P)/p, in addition,
wnere p _, lfp> >O , for (i). ) U
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Ao, s s-o1 s/(s-l);s 1 (107) Pergamon Press, 1982

= ; = 1* . Goodman, I.R., "Characterizations of n-ary Fuzzy
Set Operations which Induce Hoomorphic Random

Thus the condition in eq.(9 8) becomes Set Operations", to appear in Fuzzy Information
h and Decision Processes, M.M. Gupta and E.Sanchez,

un Z((.saj(x2)-l)/(s-l))nj 4 ((x2 ) eds., North Holand Press, 19832

exists. (This correspondsi to (57),(64), and (38) (the 4. Goodman, I.R., "Some Fuzi Set Operations which
latter for s=l).) Lastly: eq.(10) becomes Induce Hozc=orphic RanOom Set Operations", Proc.

26th-Conf. Soc. Gal. Sys Research., Wash.,D.C.,

lr " (P- ) u-_1O(+(s.)s-(s/s-))'s(x2)), J-i.;-19-- (47M7.
a -- r, -nt s

for s p 1 , and (109) 5. Klement, B.P., "OPerat.ons on Fuzzy Sets and Fuzzy
Numbers Related to Trlangular Norms", Proc. 11th

in(x2) ; s I. Int'l. Sy=-. Multi. Logic, May, 1981, Univ. of Ok]L
n-. An (2 = l-e-l(x)(2b22T

in eq.(109), l(x2) =A (x.) and ,(x 2 ) plays the1 6. Manes.E.G., Review of 'Fuzzy Switching and Auto-

role of p.(x2 in eq.(70) . (See also eq.(5 8 ).) mata : Theory and Applications' , SIAM Review,23,
a No. 2, April, 1981 (2TI-273) . -"

5. SUMArY AND CONCLUSIONS 7. Dishkaant,E., "About Membership Estimation", FuzzySets and Syte _., 1981 (141-147).

Conditional fuzzy sets and a form of Bayes' theore= 
S a ye 5 8 4 7

were first developed (Theorem I and Remark 1) in a gen- 8. Goodman, I.R., "Applications of a Co=bined Prob-
eral t-norm, t-conorm setting. This led in a natural abilistic eand Fuzzy Set Te:hnlque to the Attribute
way to the concept of a fuzzy set sapling experiment, Problem in Ocean Surveillance",Proc. 20 th IM
requiring computations for averaged fuzzy data sets and Conf. Decis. & Cntrl., San Diego, Calif., Dec.,
posterior parameter sets, through the respective -member- ]T (1 -0--) -
ship functions. The asymptotic behavior, as sample sizes
increase, for these two critical types of fuzzy sets 9. DuboisD. and H. Prade, Fuzzy Sets and Systems,
.as the focus of the remaining part of this paper. A Academic Press, 1980 .
number of specific systems were first irvestigated. Non-
trivial results were obtained for the system 10. Hardy, G.H., Divergent Series , Oxford Uniersity
'i-(-)~: .-do,probsum) (Theorem 2) and the non De .organ Press, 1963
system (i-(-),prod,caxbndsun) (Theorem 3(1)). However,
other fuzzy eet systems were shown either to lead to 11. Yager, R.R., "On a General Class of Fuzzy Connect-
trivial results, such as (2-(-),min,max) (see-Theorem 3 ives", Fuzzy Sets and Systems 4,1980 (235-242)
(1i)) , or to somewhat coplicated forms of Adubics use
(see Theorem 3(iM) and Theorem 8(i))' A modification
of Yager's family may prove useful (Theorem 8(ii)).

More generally, -t was thown-Iheorems 5,6,7) that
PrMank's large De Morgan f eij.y of t-nor-s and. t-conorms,
including the special- ca.s (l-(-),prod,probsum), ad-mts
rantrivial as--ptotic results. Still more generally, it
was shown that for fuzzy set systems based on De Morgan
t-nrms and t-conorms which bfwe strictly increasing
generators and which satisfy an analyticity condition,
feasible asyptotic forms for-the two critical functions
are obtainable (Theorem 9).

.Future work will deal with further development of
a fuzzy set sa-plicg experiment. in eddition, the
following important problems will be considered: random
set interpretations of the basic results obtained he-e
(via -the hozomrphisms developed ,e.g., in [4] ); appli-
cations of these results to general problems of para.--ter
estimation when so=- of the infor-ation is in vague or
linguistic for=; closer tie-ins with the Laws of Large
Nu=bers; and determin-Ation of which fuzzy set system is
most appropriate for a given estimation problem.
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